A Similarity Transformation and the Decay Mode Solutions for Three-Dimensional Cylindrical Kadomtsev-Petviashvili Equation

ZHANG Jinliang(张金良), WANG Fei(王飞)
(School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China)

Abstract: In this paper, a similarity transformation between the solutions of three-dimensional cylindrical Kadomtsev-Petviashvili equation and the solutions of three-dimensional Kadomtsev-Petviashvili equation with constant coefficients is firstly derived, and the corresponding constraint conditions for the coefficients of three-dimensional cylindrical Kadomtsev-Petviashvili equations are obtained. Then the exact solutions of the three-dimensional cylindrical Kadomtsev-Petviashvili equation are expressed by the similarity transformation and the solutions of the three-dimensional Kadomtsev-Petviashvili equation with constant coefficients. Lastly, four special three-dimensional cylindrical Kadomtsev-Petviashvili equations are studied, especially, the decay mode solutions of these three-dimensional cylindrical Kadomtsev-Petviashvili equations are obtained.

Key words: The three-dimensional cylindrical Kadomtsev-Petviashvili equation; The three-dimensional Kadomtsev-Petviashvili equation; Similarity transformation; Decay mode solution

CLC Number: O175.2
AMS(2000) Subject Classification: 35Q51; 35Q99
Document code: A
Article ID: 1001-9847(2019)02-0370-06

1. Introduction

The cylindrical Kadomtsev-Petviashvili equation (CKP) in the form
\[(u_t + 6uu_x + u_{xxx})_x + \frac{1}{2t}u_x + \frac{3\alpha^2}{t^2}u_{yy} = 0,\]
(1.1)
was introduced by Johnson\cite{1-2} to describe surface wave in a shallow incompressible fluid. The CKP (1.1) for magnetized plasmas with pressure effects and transverse perturbations in cylindrical geometry was also derived by using the small amplitude perturbation expansion method \cite{3}. And Eq. (1.1) is a (2+1)-dimensional generalization of the cylindrical KdV equation (CKdV)\cite{4-5}
\[u_t + 6uu_x + u_{xxx} + \frac{1}{2t}u = 0.\]
(1.2)

Received date: 2018-05-17

Foundation item: Supported by the National Natural Science Foundation of China (51675161) and the Student Research Training Program of Henan University of Science and Technology (2017159)

Biography: ZHANG Jinliang, male, Han, Henan, professor, major in nonlinear mathematical physics and financial mathematics.
Due to the importance and wide application, CKP (1.1) has been paid attention by many researchers in mathematical physics. For instance, In [6], Klein et al. have shown that the Lax pair corresponding KP and CKP equation are gauge equivalent, and some class of solutions (Such as horseshoe-like-front solutions, lump solutions and rational solutions) were obtained by using Darboux transformation approach. In [7], DENG has shown that the decay mode solution for CKP (1.1) can be obtained by Bäcklund transformation and Hirota’s method.

In [8-9], the reductive perturbation method is employed to derive a three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation

\[
\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial t} + Au \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} \right) + \frac{1}{2t} \frac{\partial u}{\partial r} + \frac{C}{2\lambda^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\lambda D \partial^2 u}{2 \partial z^2} = 0, \tag{1.3}
\]

which is used to describe the non-planar ion-acoustic waves in positive-negative ion plasmas with stationary dust particles, the generalized expansion method is used to solve analytically the evolution equation, and a train of well-separated bell-shaped periodic pulses which can change to solitary pulses at certain conditions are obtained. In this paper, the 3D-CKP (1.3) will be considered.

The paper is organized as follows: In Section 2, we derive a similarity transformation \[^{10-13}\] and the constraint condition for 3D-CKP (1.3); In Section 3, some special types of 3D-CKP are studied, and the decay mode solutions are derived.

2. The Derivation of Similarity Transformation

Suppose that the exact solutions of Eq. (1.3) are in the forms

\[
u(r, z, \theta, t) = \rho(t) W(r, z, \theta, T), \quad T = T(t), \tag{2.1}\]

where \(\rho(t), T(t)\) are determined later, and \(W(r, z, \theta, T)\) satisfy three dimensional Kadomtsev-Petviashvili (3D-KP) equation with constant coefficients

\[
\frac{\partial}{\partial r} \left(\frac{\partial W}{\partial T} + 6W \frac{\partial W}{\partial r} + \frac{\partial^3 W}{\partial r^3} \right) + c \frac{\partial^2 W}{\partial \theta^2} + d \frac{\partial^2 W}{\partial z^2} = 0, \tag{2.2}\]

where \(c, d\) are constants. From (2.1) we have

\[
u_t = \rho W_T + \rho' W, \quad u_{rt} = \rho W_{TT} + \rho' W_T, \tag{2.3}\]

\[
\frac{\partial}{\partial r} \left(Au \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} \right) = \rho^2 \frac{\partial}{\partial r} \left(AW \frac{\partial W}{\partial r} \right), \quad \frac{\partial}{\partial r} \left(B \frac{\partial^3 u}{\partial r^3} \right) = \rho \frac{\partial}{\partial r} \left(B \frac{\partial^3 W}{\partial r^3} \right), \tag{2.4}\]

\[
1 + \frac{C}{2t} \frac{\partial^2 u}{\partial \theta^2} + \frac{\lambda D \partial^2 u}{\partial z^2} = \frac{C}{2t} \frac{\partial^2 W}{\partial \theta^2} + \frac{\lambda D \partial^2 W}{\partial z^2}. \tag{2.5}\]

Substituting (2.1), (2.3)-(2.5) into the left hand side of system (1.3) and considering (2.2) simultaneously yields

\[
\rho T' \left(\frac{\partial}{\partial r} \left(\frac{\partial W}{\partial T} + 6W \frac{\partial W}{\partial r} + \frac{\partial^3 W}{\partial r^3} \right) + c \frac{\partial^2 W}{\partial \theta^2} + d \frac{\partial^2 W}{\partial z^2} \right) + \frac{\partial}{\partial r} \left(\rho(A \rho - 6T') \frac{\partial W}{\partial r} \right)
\]

\[
= \frac{\partial}{\partial r} \left(\rho(B - T') \frac{\partial^3 W}{\partial r^3} \right) + \rho \left(\frac{C}{2\lambda^2} - T' c \right) \frac{\partial^2 W}{\partial \theta^2} + \rho \left(\frac{\lambda D}{2} - T' d \right) \frac{\partial^2 W}{\partial z^2} + \left(\rho' + \frac{1}{2t} \rho \right) \frac{\partial W}{\partial r}. \tag{2.6}\]

From (2.6), we obtain a set of partial differential equations

\[A \rho - 6T' = 0, \quad B - T' = 0, \quad \frac{C}{2\lambda^2} - T' c = 0, \quad \frac{\lambda D}{2} - T' d = 0, \quad \rho' + \frac{1}{2t} \rho = 0. \tag{2.7}\]
Solving these ODEs (2.7), we find the following expressions

\[T = \int B \, dr, \quad \rho = t^{-\frac{1}{2}}, \quad A = 6Bt^{\frac{1}{2}}, \quad C = 2\lambda t^2 B, \quad D = \frac{2dB}{\lambda}. \]

\[(2.8) \]

Then 3D-CKP (1.3) is rewritten as

\[\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial t} + 6B t^\frac{1}{2} \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} \right) + \frac{1}{2t} \frac{\partial u}{\partial r} + \epsilon B \frac{\partial^2 u}{\partial \theta^2} + dB \frac{\partial^2 u}{\partial z^2} = 0, \]

\[(2.9) \]

and similarity transformation (2.1) is rewritten as

\[u(r, z, \theta, t) = t^{-\frac{1}{2}} W(r, z, \theta, T), \quad T = \int B \, dr. \]

\[(2.10) \]

Using the similarity transformation (2.10) and the solutions of 3D-KP (2.2), we can easily obtain the solutions of 3D-CKP (2.9).

3. Some Special Type of 3D-CKP (2.9) and the Decay Mode Solutions

In this section, we consider some special type of 3D-CKP (2.9).

1) Cylindrical KdV equation with variable coefficients and the decay mode solutions. Setting \(c = d = 0 \) in Eq. (2.9) yields a cylindrical KdV equation with variable coefficients

\[\frac{\partial u}{\partial t} + 6B t^\frac{1}{2} \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} = 0, \]

\[(3.1) \]

and 3D-KP (2.2) becomes a KdV equation with constant coefficients

\[\frac{\partial W}{\partial T} + 6W \frac{\partial W}{\partial r} + \frac{\partial^3 W}{\partial r^3} = 0. \]

\[(3.2) \]

From [14], some special soliton solutions of KdV (3.2) are listed as follows.

One soliton:

\[W = \frac{k^2}{2} \text{sech}^2 \frac{k_1 r + \omega_1 T}{2}, \quad \omega_1 = -k_1^3. \]

\[(3.3) \]

Two soliton:

\[W = 2 \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_1 + \xi_2 + A_{12}} \right) \right]_{xx}, \]

\[(3.4) \]

where \(\xi_j = k_j r + \omega_j T, \omega_j = -k_j^3, j = 1, 2 \), \(e^{A_{12}} = \left(\frac{k_j - k_l}{k_j + k_l}\right)^2 \) \(j < l, l \in \{1, 2, 3\} \).

Three soliton:

\[W = 2 \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_3} + e^{\xi_1 + \xi_2 + A_{12}} + e^{\xi_1 + \xi_3 + A_{13}} + e^{\xi_2 + \xi_3 + A_{23}} + e^{\xi_1 + \xi_2 + \xi_3 + A_{123}} \right) \right]_{xx}, \]

\[(3.5) \]

where \(\xi_j = k_j r + \omega_j T, \omega_j = -k_j^3, j = 1, 2, 3 \), \(e^{A_{12}} = \left(\frac{k_j - k_l}{k_j + k_l}\right)^2 \) \(j < l, l \in \{1, 2, 3\} \).

Using the similarity transformation (2.10) and the solutions above, the decay mode soliton solutions of cylindrical KdV equation with variable coefficients (3.1) are obtained as follows.

One decay mode soliton:

\[u(r, z, \theta, t) = \frac{k^2}{2} t^{-\frac{1}{2}} \text{sech}^2 \frac{k_1 r + \omega_1 T}{2}, \quad T = \int B \, dr, \quad \omega_1 = -k_1^3. \]

\[(3.6) \]

Two decay mode soliton:

\[u(r, z, \theta, t) = 2t^{-\frac{1}{2}} \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_1 + \xi_2 + A_{12}} \right) \right]_{xx}, \]

\[(3.7) \]

where \(\xi_j = k_j r + \omega_j T, \omega_j = -k_j^3, j = 1, 2 \), \(e^{A_{12}} = \left(\frac{k_j - k_l}{k_j + k_l}\right)^2 \) \(j < l, l \in \{1, 2, 3\} \).

Three decay mode soliton:

\[u(r, z, \theta, t) = 2t^{-\frac{1}{2}} \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_3} + e^{\xi_1 + \xi_2 + A_{12}} + e^{\xi_1 + \xi_3 + A_{13}} + e^{\xi_2 + \xi_3 + A_{23}} \right) \right]_{xx}. \]
where \(\xi_j = k_j r + \omega_j T, T = \int B \mathrm{d} \tau, \omega_j = -k_j^2 (j = 1, 2, 3), e^{A_{ij}} = \left(\frac{k_j - k_i}{k_j + k_i} \right)^2 (j < l, l = 1, 2, 3).

Note 3.1 The decay mode multi-soliton solutions of Eq. (3.1) can be obtained using the results in [14].

2) Two-dimensional cylindrical Kadomtsev-Petviashvili (2D-CKP) equation and the decay mode solutions.

Setting \(c = 3\sigma^2, d = 0 \) in Eq. (2.9) yields a two dimensional cylindrical Kadomtsev-Petviashvili (2D-CKP) equation

\[
\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial t} + 6B t \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} \right) + \frac{1}{2l} \frac{\partial u}{\partial r} + 3\sigma^2 B \frac{\partial^2 u}{\partial \theta^2} = 0,
\]

and 3D-KP (2.2) becomes Kadomtsev-Petviashvili equation with constant coefficients

\[
\frac{\partial}{\partial r} \left(\frac{\partial W}{\partial T} + 6W \frac{\partial W}{\partial r} + \frac{\partial^3 W}{\partial r^3} \right) + 3\sigma^2 \frac{\partial^2 W}{\partial \theta^2} = 0.
\]

From [14], soliton solutions of KP (3.10) are listed as follows.

One-line soliton:

\[
W = \frac{k_1^2}{2} \text{sech}^2 \frac{k_1(r + \omega_1 T + p_1 \theta)}{2}, \quad \omega_1 = -k_1^2 - 3\sigma^2 p_1^2.
\]

Two-line soliton:

\[
W = 2 \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_1 + \xi_2 + A_{12}} \right) \right]_{xx},
\]

where \(\xi_j = k_j(r + \omega_j T + p_j \theta), \omega_j = -k_j^2 - 3\sigma^2 p_j^2 (j = 1, 2), e^{A_{12}} = \frac{(k_1 - k_2)^2 - \sigma^2 (p_1 - p_2)^2}{(k_1 + k_2)^2 - \sigma^2 (p_1 + p_2)^2}.

Using the similarity transformation (2.10), the decay mode soliton solutions of two-dimensional cylindrical Kadomtsev-Petviashvili (2D-CKP) equation (3.9) are obtained as follows.

One-line decay mode soliton:

\[
u(r, z, \theta, t) = t^{-\frac{1}{2}} \frac{k_1^2}{2} \text{sech}^2 \frac{k_1(r + \omega_1 T + p_1 \theta)}{2},
\]

where \(T = \int B \mathrm{d} \tau, \omega_1 = -k_1^2 - 3\sigma^2 p_1^2.

Two-line decay mode soliton:

\[
u(r, z, \theta, t) = 2t^{-\frac{1}{2}} \left[\ln \left(1 + e^{\xi_1} + e^{\xi_2} + e^{\xi_1 + \xi_2 + A_{12}} \right) \right]_{xx},
\]

where

\[
\xi_j = k_j(r + \omega_j T + p_j \theta), T = \int B \mathrm{d} \tau, \omega_j = -k_j^2 - 3\sigma^2 p_j^2 (j = 1, 2),
\]

\[
e^{A_{12}} = \frac{(k_1 - k_2)^2 - \sigma^2 (p_1 - p_2)^2}{(k_1 + k_2)^2 - \sigma^2 (p_1 + p_2)^2}.
\]

Note 3.2 The decay mode multi-soliton solutions of Eq. (3.1) can be obtained using the results in [14]. Here we omit it for simplicity.

3) First special three-dimensional cylindrical Kadomtsev-Petviashvili equation and the decay mode solutions.

Setting \(B=\text{const} \) in Eq. (2.9) yields a three dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation

\[
\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial t} + 6B t \frac{\partial u}{\partial r} + B \frac{\partial^3 u}{\partial r^3} \right) + \frac{1}{2l} \frac{\partial u}{\partial r} + cB \frac{\partial^2 u}{\partial \theta^2} + dB \frac{\partial^2 u}{\partial z^2} = 0,
\]

where

\[
e^{A_{ij}} = \left(\frac{k_i - k_j}{k_i + k_j} \right)^2 (j < l, l = 1, 2, 3).
\]
and 3D-KP (2.2) leads
\[
\frac{\partial}{\partial r} \left(\frac{\partial W}{\partial r} + 6W \frac{\partial W}{\partial r} + \frac{\partial W}{\partial r^2} \right) + c \frac{\partial^2 W}{\partial \theta^2} + d \frac{\partial^2 W}{\partial z^2} = 0. \tag{3.16}
\]

The similarity transformation (2.10) is rewritten as
\[
u(r, z, \theta, t) = t^{-\frac{1}{2}} W(r, z, \theta, T), T = Bt. \tag{3.17}
\]

Using the similarity transformation (3.17) and the travelling wave solutions of Eq. (3.16), the decay mode travelling wave solutions of Eq. (3.15) can obtained as follows.

When \(n + cm^2 + dl^2 < 0 \),
\[
u_1 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \text{sech}^2 \left(\frac{1}{2} \sqrt{- (n + cm^2 + dl^2)} \xi \right), \tag{3.18}
\]
\[
u_2 = \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \text{csch}^2 \left(\frac{1}{2} \sqrt{- (n + cm^2 + dl^2)} \xi \right). \tag{3.19}
\]

When \(n + cm^2 + dl^2 > 0 \),
\[
u_3 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \tan^2 \left(\frac{1}{2} \sqrt{n + cm^2 + dl^2} \right), \tag{3.20}
\]
\[
u_4 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \cot^2 \left(\frac{1}{2} \sqrt{n + cm^2 + dl^2} \right). \tag{3.21}
\]

When \(n + cm^2 + dl^2 = 0 \),
\[
u_5 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - 2t^{-\frac{1}{2}} \left(\frac{C_2}{C_1 + C_2} \right)^2, \tag{3.22}
\]
where \(\xi = r + lz - \frac{bC}{2cM} \), \(C_1, C_2, l, m, n \) are constants.

4) Second special three-dimensional cylindrical Kadomtsev-Petviashvili equation and the decay mode solutions.

Setting \(B = \frac{C}{\sqrt{t}} \) in Eq. (2.9) yields a three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation
\[
\frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} + \frac{3C}{cM^2} \frac{\partial u}{\partial r} + \frac{C}{2cM^2} \frac{\partial^2 u}{\partial r^2} \right) + \frac{1}{2t} \frac{\partial u}{\partial r} + \frac{C}{2cM^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{dC}{2cM^2} \frac{\partial^2 u}{\partial z^2} = 0. \tag{3.23}
\]

The similarity transformation (2.10) is rewritten as
\[
u(r, z, \theta, t) = t^{-\frac{1}{2}} W(r, z, \theta, T), T = \int^1 \frac{bC}{2cM^2} d\tau. \tag{3.24}
\]

If \(b, C, c, \lambda \) are constants, \(T = -\frac{bC}{2cM} \).

Using the similarity transformation (3.24) and the travelling wave solutions of Eq. (3.16), the decay mode travelling wave solutions of Eq. (3.23) can obtained as follows.

When \(n + cm^2 + dl^2 < 0 \),
\[
u_1 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \text{sech}^2 \left(\frac{1}{2} \sqrt{- (n + cm^2 + dl^2)} \xi \right), \tag{3.25}
\]
\[
u_2 = \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \text{csch}^2 \left(\frac{1}{2} \sqrt{- (n + cm^2 + dl^2)} \xi \right). \tag{3.26}
\]

When \(n + cm^2 + dl^2 > 0 \),
\[
u_3 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \tan^2 \left(\frac{1}{2} \sqrt{n + cm^2 + dl^2} \right), \tag{3.27}
\]
\[
u_4 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - \frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) \cot^2 \left(\frac{1}{2} \sqrt{n + cm^2 + dl^2} \right). \tag{3.28}
\]

When \(n + cm^2 + dl^2 = 0 \),
\[
u_5 = -\frac{1}{2} t^{-\frac{1}{2}} (n + cm^2 + dl^2) - 2t^{-\frac{1}{2}} \left(\frac{C_2}{C_1 + C_2} \right)^2, \tag{3.29}
\]
where \(\xi = r + lz - \frac{bC}{2cM} \), \(C_1, C_2, l, m, n \) are constants.

Note 3.3 Except Eqs. (3.15) and (3.23), obviously, there exists other type of 3D-CKP (2.9).
相似变换及三维柱KP方程的衰减解

张金良，王飞
(河南科技大学数学与统计学院, 河南 洛阳 471023)

摘要：本文首先导出三维柱KP方程与三维常系数KP方程解之间的相似变换及三维柱KP方程的系数所满足的约束条件；借助于该相似变换及三维常系数KP方程的解，得到三维柱KP方程的解；最后，讨论四个特殊的三维柱KP方程，特别地，得到这些三维柱KP方程的衰减解。

关键词：三维柱KP方程; 三维KP方程; 相似变换; 衰减解

References: