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Abstract: We study the positive solutions of a class of fractional differential equations
with integral boundary conditions and infinite-point boundary value conditions. By mean
of the properties of Green function and the fixed point theorem of cone expansion and
compression of norm type, the existence results of the positive solution of the boundary
value problem are obtained. Finally, we also give an example to illustrate the applicability
of the results.
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1. Introduction

In recent years, the fractional differential equation has been widely used in many fields.
Numerous mathematicians has been devoted to the study of it’s related properties!!=*. The
solvability analysis of fractional differential equations with boundary conditions has become
a hot theme. In this topic, they mainly study the existence or positive solutions of boundary
value problems for fractional differential equations®~1°!. In this paper, we consider the integral
boundary value condition and the infinite point boundary value condition together, and mainly
discuss the existence of positive solutions of fractional differential equations for such boundary
value problems.

This article deals with integral and infinite-point boundary value problems of the frac-
tional differential equations

Dg u(t) + h(t,u(t)) =0, t € [0,1],
u(0)=0, i=0,1,2,....n—2, (1.1)

D u(1) = ifj B; [ u(s)ds + i’f (),
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where D represents the standard Riemann-Liouville fractional derivative of order « satisfying
n—1<a<nn>3n€N+1<B<o¢—10<771<n2< << 1, €=

s — L z B — z 2 >0, By > 0(i = 1,2,...), h e C([0,1] x [0, +00), [0, +00)).

If u € C[O 1], u(t ) > 0(0 <t < 1) and u satisfies (1.1) on [0, 1], u is called a positive
solution of problem (1.1).

In [11], the author investigated the existence of solutions for fractional differential equa-
tions with three-point integral boundary conditions
{Cqu(t) = f(t,z(t), 0<t<1,1<q<2,
(0)=0,2(1) =a [ z(s)ds, 0<n<1,
where DY represents the Caputo fractional derivative of order ¢, o € R, o # n?, f : [0,1] x
X — X is continuous, (X, ||-]|) is a Banach space.
In [12], the authors considered the existence and multiplicity of positive solutions for the
following infinite-point boundary value problem of fractional differential equations
D§u(t) +q(t) f(t,u(t) =0, 0 <t <1,

u(0) = 0,u(l) = ;aiu(fi)a
where D, denotes the standard Riemann-Liouville fractional derivative satisfying 1 < o < 2,
gi € (07 1)7 Q; € [07 +OO) with Zaigiail < 17 q(t) € C([()?Ha [07+OO))7 f(t7u) € C([()? 1] X
i=1

[0, +00), [0, +00)).
Recently, in [13], the authors investigated the existence results for fractional differential
equations with integral and multi-point boundary conditions
Dox(t) + f(t,x(t)) =0, te]l0,1],
zD0)=0, i=0,1,2,...,n— 2,

z(1) = EﬁZIOL d5+2% (1)

where D? is the standard Rlemann—LlouVﬂle fractlonal derlvatlve of order o satisfying n—1 <
c<n,n>3neN 0<ny << <Nnoa<l By >01<i<m-—2),misan
integer satisfying m >3, f:[0,1] x R — R is a given continuous function.

Inspired by the above literature, we obtain the existence of positive solutions for fractional
differential equations by means of the fixed point theorem of the cone. Compared with the
existing literature, this paper has the following two features. First, integral and infinite-point
boundary value conditions are considered together in this paper. Second, the aim to this
paper is to investigate the existence of positive solutions for boundary value problem (1.1).

In the rest of this paper, the following arrangements have been made. Section 2 is aimed
to recall certain basic definitions and lemmas. Section 3 is devoted to gain the main results
by virtue of the Guo-Krasnoselskii’s fixed point theorem. Section 4 is intended to illustrate

the conclusion with an example.
2. Preliminaries

Definition 2.1["*/  The Riemann-Liouville fractional integral of order o > 0 of a con-
tinuous function h : (0, +00) — R is defined as

o h(t) = F(la) /0 (t — ) h(s)ds,
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provided that the right-hand side is pointwise defined on (0, 4+00), where I'(«) is the gamma
function.

Definition 2.2["¥/  The Riemann-Liouville fractional derivative of order a@ > 0 for a
function f : (0,+00) — R is defined by

1 dn t
Do) = —— L[ = gt 1< .
o f(t) T —a) arr /0 (t—s) f(s)ds, n <a<n,neN

Lemma 2.1 Let a > 0. Assume that u € C(0,1) () L(0, 1) with a fractional derivative
of order « that belongs to C'(0,1) [ L(0,1):
DS u(t) = u(t) + Crt* 4+ Cot* 2 4o + Ot ™™,
where C; € R, i:1,2,-~- nn—1<a<n.
Lemma 2.2 Let y € L'[0, 1], then the solution of the problem
Dgu(t) + y(t) =0, t € [0, 1],

u(0)=0,i=0,1,2,...,n — 2, (2.1)

0+u Zﬁlfo d5+ Z% ( 1)

can be expressed by

u(t):/o G(t,s)y(s)ds

where
_ 1 teIp(s)(1 — s)* AL —p(0)(t —s)*7, 0<s<t<1,
Glt.s) = p(O)F(a) {t“‘lp(s)(l — )AL 0<t<s<l. (22)
W) = Fa g — 5 LA 1= = =D -0 23)

s<n s<n;
Proof By Lemma 2.1, we get

u(t) = —ISy(t) + Crt® 4 Cot® 2 4o - Ot ™,
In view of the boundary conditions u*(0) =0, i = 0,1,2,---n — 2, the parameters Cy = C5 =
- = (), = 0 are concluded and
u(t) = =I5 y(t) + Ot

By the boundary value condition

0+U Z Bi / u(s)ds + ;%U(m),

we have

1

5 R 1 — )P 1y (s)ds 1
Diull) == = [ (=9 s +C

= ; Bi /Om u(s)ds + Z Yiu(n;)

~ C l « o—
=3 BTy () + L +Z% —I*y(n:) + Cin? ),

i=1

I'(a)
(o= p)

that is to say,

Cl{# - = Zﬂml > e
=1
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1 (1—s)o it (i — )™ 5)o
g{/o F(Oé—ﬁ) Zﬁz/ Ck—l—]_ ds—Z'%/ 7a)y(s)ds}
Hence, the solution is

¢ 1 (1 — g)o—B-1p(g
u(t) _—/ ! )( S)a_ly(s)ds—i—/o (1= o )y(s)ds't’l_1

I'(a I"()p(0)
/0 My(s)ds + /Ot 1= S);(_;:(%()S)ta_ly(S)ds
*/t iy v
_ /t p(s)(1 — S)Q_B;"l(]:)_;(())p(())(t — g)o ! J(5)ds + /tl p(s)(1 (Z);zs;lt“_ly(s)ds

:/01 G(t,s)y(s)ds

This completes the proof.

Lemma 2.3 Suppose that p(0) > 0, and then the function p(s) > 0, s € [0,1] and p(s)
is nondecreasing on [0, 1].

Proof Using hypothesis made by (1.1), we have

) 1, 0 o o
p(O):m—EZﬁim —Z%m '>0,

Zé Z afi(ni —s)* (1= s)"*(1— )" = Z Bia — s)moI(1 — 5P
+;;ﬁi(ﬂﬂ)(m—s)%l—s)‘a(l—s)ﬁ
+ ;_Vt(l —a)(n; — )1 —5)"*(1 —s)?
+ i vila—=1)(n; — )21 =) M (1 - s)”
—<Z& (s —5)* (1 - )@*ﬁ(l—s)—(m—s>+5gl<m_s)]
*lE (s = 5)" (1= 8) 7 (@ = 1)(1 = ) = (@ = 1)(m: — ) + Blm: = 5)] > 0.

So p(s) is nondecreasing on [0, 1]. This completes the proof.
Lemma 2.4 The function G(t, s) defined by (2.2) satisfies the following properties:

1) G(t,s) >0,2G(t,s) >0,0<t,s<1;
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2) max G(t,s) = G(1,5),0<s<1;
te[0,1]

3) G(t,s) > t*"1G(1,s),0 < t, s < 1;
4) max G(t,s) > (3)*'G(1,5),0<s < L.
1<<8

Proof 1) For0<s<t<1, by Lemma 2.3, we can see that

G(t,s) ZM[t“_lp(S)(l =) = p(0)(t — 5)° ]

It is clear that for 0 <t <s <1, G(¢,8) > 0.
By simple computation, we have

2" = o)

(o —1D)p(s)(1 — s)*=F=1ga=2, 0<t<s<l.

) 1 {(a — Dp(s)(1 = s)* B2 — (o = 1)p(0)(t — )* 2,0 < s <t < 1,

Apparently, %G(t, s) is continuous on [0, 1] x [0,1]. By Lemma 2.3, we only need to consider

on 0 <s<t<1. Here,

a a—B—1,a—2 a—2
5 G(t9) = sl = Dp(s)(1 = 8)° 71 — (o= O}t~ )
(Oé 1)p(0)ta 2 a—pF—1 S a—2
> (O)F( ) [(1 - S) ? - (]‘ - ;) ]
( 1) a—2 a—2 S a—2
RN DA b

2) By 1), we get that G(t, s) is nondecreasing. So,

_# s _Sa—B—l_ _Sa—l s
3) For 0 <s<t<1, we can see that
— 1 a—1 s _ s a—p—-1 _ — s a—1
_ 1 a=1r06) (1 — g)@—B-1 _ _ S\a-1
it P = = p(0) = )
1 a—1 a—pB—1 a—1
th [p(s)(1 —5)* "1 = p(0)(1 — 5)*~]
=t*"'G(1, s).
For 0 <t < s <1, we can notice that
1 a—1 a—pB-—1 a—1
G(t,s) = Wt p(s)(1 —8)* P 1>t*71G(1, ).
4) By 3), it is easy to see that ,H<1?<X, G(t,s) > (3)*'G(1,s),0< s < 1.

Let E = C[0,1] be the Banach space equipped with the norm || u ||= sup |u(¢)| and
0<t<1

define a cone P by
P={ucEut)>t*" | u|,tecl0,1]}.
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Define the operator T as follows:
1
(Tu)(t) = / G(t,s)h(s,u(s))ds,0 <t < 1. (2.4)
0

Clearly, T : P — C[0,1]. By Lemma 2.2, we get that the fixed point of T is the solution of
problem (1.1).

Lemma 2.5 7T : P — P is completely continuous.

Proof First, Yu € P, it follows from the definition of 7' and the non-negativity of
G(t,s) and h that, (T'u)(t) > 0(0 <t < 1). By Lemma 2.4 and (2.4), we have that

(Tu)(t) :/o G(t, s)h(s,u(s))ds</0 G(1,s)h(s,u(s))ds, Vte[0,1],

1 1
(Tu)(t) = / G(t, 5)h(s, u(s))ds>t"! / G(1, 8)h(s,u(s))ds, Vit e [0,1].
From the above two i(;lequalities, we can get "
(Tu)(t) >t || Tu |, Vtelo,1].
So, Tu € P. That means T : P — P.
From the continuity of h, we know that 7" is continuous on P. Next, we are in a position to
show that 7' is a compact mapping. VD C P, D is bounded. That is to say, AM > 0,Vu € D,

we have || u ||[< M. Denote L =  max | h(t,u) | +1. For any u € D, we get that
0<t<1,0<u<M

1 1
| Tu(t) |§/ G(1,8)h(s,u(s))ds < L/ G(1,s)ds.
0 0
So, T(D) is bounded. For t1,ty € [0,1],¢; < t2, we have
| Tu(ty) — Tu(ty) |

/OI(G(tg,s)—G(tl,s))h(s,u(s))ds+/t2(G(t2,s)—G(tl,s))h(s,u(s))ds

=|
+

/t (G(ta, s) — G(t1,s))h(s,u(s))ds |
L h a—FB—1,a—1 a—1 a—FB—11a—1
§p<o>r<a>/o | p(s) (1 — )7 P8 — p(0)(ta — 5)* — p(s)(1 — 8) 1S

a—1 L 2 a—pB-1 a—1
)t st e [ pE0 T po) -
_ s — s a—B—1ia—1 s L ! s — s a—pB—-1/a—1 _ ja—1 s
L e e L O A G A CRE R I

L h _ g)e—B-lpa—1 _ a1 s L " —8) (4 —8)* 7t | ds
< <a>/0 | p(s)(1 = s) (5 9 h | d +F(a)/0 | (t2 — s) (t1 —s) | d

p(0)I"
L

NS TPNY ’ S)(1 — g)e—B-1(pa—1 _ ol a4 T t2 et | ds
+p(o)p(a)/tl | p(s)(1 =) (=t |d +p(0>F(a>/t1 | p(0)(ta — 5)** | d

# ' s — s a—B—-1/ra—1 _ ja—1 s
p(0) () /t2 [ p(s)(L —5) (t3 t7) [ d

L M gesiget eetyge e B [T e
<o, e e s e

— (t; —8)* Vds +

+
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L 2 a—1 L ! a—pB—1/3a— a—
+ra>/tl N A IO / (1=t — s

— L =t (2= t)”
*p<0)r(a—ﬁ+1>(2 ! +F(oz+1) Tla+1)"7° D

So, T'(D) is equicontinuous. By the Arzela-Ascoli theorem, we can conclude that the operator

(13 —t8 — (t2 —t1)%) +

T : P — P is completely continuous.

Theorem 2.1 (Guo-Krasnoselskii’s Fixed Point Theorem)*>) Let E be a Banach space,
P C E a cone, and £2;, {2, two bounded open balls of E centered at the origin with 2, C £2,.
Suppose that:A : P((22\§21) — P is a completely continuous operator such that either

1) | Az|| < ||z||, = € P(0f21, and ||[Azx| > ||z||, z € P() 92 or

2) [|Az|| > ||z||, = € P02, and ||Az|| < ||z]|, x € P()0{2
holds. Then A has at least one fixed point in P ((22\21).

3. Main Results
Definition 3.1 Let

h® = lim max hit, u) hoo = lim min hit, u)
w0t 0<t<1 w0 wustoo0<i<l  w

Theorem 3.1 If h° = 0,h,, = +00, then the boundary value problem (1.1) has at least
a positive solution u*.
Proof By the definition of ho we have that 3r; > 0, for 0 < u < ry, then

max ——= /Glsds

0<t<1
That is to say, for 0 <u <ry, 0 <t < 1 we get that

1
h(t,u) < (/ G(1,s)ds) tu.
0
Denote 21 ={u € P:|| u ||< ri}. If u € 9821, we know that || u ||=r;. So, for 0 < s <1, we
have

1
0 <u(s) <ry, h(s,u(s)) < (/ G(1,s)ds)  u(s).
0
By Lemma 2.4, we have that

0<t<1 0<t<1 0<t<1

| Tu ||= max | (Tu)(t) |= max (Tu)(t) = max/ G(t,s)h(s,u(s))ds
§/ G(1,5)h(s,u(s))ds < (/ G(l,s)ds)l(/ G(1,s)u(s)ds)
§/Glsds /G(lsds) ri=[u| .

By the definition of h., we get that 3Ir; > 0, for u > T3, we have
h(t
min hit,w) 16"‘1(/ G(1,s)ds)" L.
0<t<1 U %
That is to say, for u > 75, 0 <t < 1, we get that

h(t,u) > 16a-1([‘ G(1,5)ds) " u

4
Let ro > max{ry,4°7 '3}, 25 = {u € P :|| u ||< ro}. If u € 962, then || u ||= ry. For
igsgi,wehave

a— 1 a— 1 a— —_—
u(s) 2 s* 7 [ ullZ ()7 lull= ()2 27,
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N

h(s, u(s)) > 16&1(/ G, 5)ds) " Lu(s).

1

By Lemma 2.4, we obtain

| Tu ||= max | (Tu)(t) |= max/ G(t, s)h(s,u(s))ds

0<t<

0<t<1

>max/ G(t, s)h(s, u(s))ds

>(1

216(1—1 [/

4

—
Q
|
_
\

=

G(ls 6“1/ G(1,s)ds] 'ds

e

4

G(l,s)ds]_l(i)a_l/ G(1,s)ds - (i)a_lrz

1

=r, =l
It follows from Theorem 2.1 that T has at least one fixed point u* in P((£22\21). So the
boundary value problem (1.1) has at least one positive solution «*. This completes the proof.
4. Example

In this section, we will present an example to illustrate our main results.
Example 4.1 Consider the following boundary value problem

T ud
Donru(t)—FWl(g/m:O, 0§t§1,
u(0) = w/(0) = u'(0) =0, (4.1)
Dy u(l) = 221 fo i ds—er—u(l—H—l)
Here, a = ;7 [ %7 Yi = ?7 N = 1- ma h(t7u) = Wﬁa /6 =L ClearlY? 627’72 > 07
O<m<m<--- <y <---<1,i=1,2,---. And
I'(a) INg, 0 N~n a-
=1 =1
5 2x 1 I 7 1 1 s
- _ - (1 — 7 — (1 — 2
I L D
5 2.1 _« 1 7 1 7 1
>2 _Z2(Z 124 — .12 o lz4 )= (2124 — .12 — .12
25— oG gy 1 1R ) = T li g +)
12
=—>0
7
Noticing Bt ) ,
t,u u 1
u  S5Yu+1YI+t
we have Wt .2
R’ = lim max ——2 = lim ——— -1 =0,
u—0+ 0<t<l U u—0+ 5/u + 1
h(t 2 1
heo = lim min (,u): im —e . = +00.

uSFoo 0<t<1 U u—too 5/u + 1 \f

Therefore the assumptions of Theorem 3.1 are satisfied. Thus Theorem 3.1 ensures that the
problem (4.1) has at least one positive solution.
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