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Abstract: We study the positive solutions of a class of fractional differential equations

with integral boundary conditions and infinite-point boundary value conditions. By mean

of the properties of Green function and the fixed point theorem of cone expansion and

compression of norm type, the existence results of the positive solution of the boundary

value problem are obtained. Finally, we also give an example to illustrate the applicability

of the results.
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1. Introduction

In recent years, the fractional differential equation has been widely used in many fields.

Numerous mathematicians has been devoted to the study of it’s related properties[1−4]. The

solvability analysis of fractional differential equations with boundary conditions has become

a hot theme. In this topic, they mainly study the existence or positive solutions of boundary

value problems for fractional differential equations[5−10]. In this paper, we consider the integral

boundary value condition and the infinite point boundary value condition together, and mainly

discuss the existence of positive solutions of fractional differential equations for such boundary

value problems.

This article deals with integral and infinite-point boundary value problems of the frac-

tional differential equations
Dα

0+u(t) + h(t, u(t)) = 0, t ∈ [0, 1],

u(i)(0) = 0, i = 0, 1, 2, ..., n− 2,

Dβ
0+u(1) =

∞∑
i=1

βi

∫ ηi

0
u(s)ds+

∞∑
i=1

γiu(ηi),

(1.1)
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whereDα represents the standard Riemann-Liouville fractional derivative of order α satisfying

n − 1 < α ≤ n, n ≥ 3, n ∈ N+, 1 ≤ β ≤ α − 1, 0 < η1 < η2 < · · · < ηi < · · · < 1, ξ =
Γ (α)

Γ (α−β)
− 1

α

∞∑
i=1

βiη
α
i −

∞∑
i=1

γiη
α−1
i > 0, βi, γi > 0(i = 1, 2, ...), h ∈ C([0, 1]× [0,+∞), [0,+∞)).

If u ∈ C[0, 1], u(t) > 0(0 < t ≤ 1) and u satisfies (1.1) on [0, 1], u is called a positive

solution of problem (1.1).

In [11], the author investigated the existence of solutions for fractional differential equa-

tions with three-point integral boundary conditions{
cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = α
∫ η

0
x(s)ds, 0 < η < 1,

where cDq represents the Caputo fractional derivative of order q, α ∈ R, α ̸= η2, f : [0, 1] ×
X → X is continuous, (X, ∥·∥) is a Banach space.

In [12], the authors considered the existence and multiplicity of positive solutions for the

following infinite-point boundary value problem of fractional differential equationsDα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑
i=1

αiu(ξi),

where Dα
0+ denotes the standard Riemann-Liouville fractional derivative satisfying 1 < α ≤ 2,

ξi ∈ (0, 1), αi ∈ [0,+∞) with
∞∑
i=1

αiξ
α−1
i < 1, q(t) ∈ C([0, 1], [0,+∞)), f(t, u) ∈ C([0, 1] ×

[0,+∞), [0,+∞)).

Recently, in [13], the authors investigated the existence results for fractional differential

equations with integral and multi-point boundary conditions
Dσx(t) + f(t, x(t)) = 0, t ∈ [0, 1],

x(i)(0) = 0, i = 0, 1, 2, ..., n− 2,

x(1) =
m−2∑
i=1

βi

∫ ηi

0
x(s)ds+

m−2∑
i=1

γix(ηi),

where Dσ is the standard Riemann-Liouville fractional derivative of order σ satisfying n−1 <

σ ≤ n, n ≥ 3, n ∈ N+, 0 < η1 < η2 < · · · < ηm−2 < 1, βi, γi > 0(1 ≤ i ≤ m − 2), m is an

integer satisfying m ≥ 3, f : [0, 1]× R → R is a given continuous function.

Inspired by the above literature, we obtain the existence of positive solutions for fractional

differential equations by means of the fixed point theorem of the cone. Compared with the

existing literature, this paper has the following two features. First, integral and infinite-point

boundary value conditions are considered together in this paper. Second, the aim to this

paper is to investigate the existence of positive solutions for boundary value problem (1.1).

In the rest of this paper, the following arrangements have been made. Section 2 is aimed

to recall certain basic definitions and lemmas. Section 3 is devoted to gain the main results

by virtue of the Guo-Krasnoselskii’s fixed point theorem. Section 4 is intended to illustrate

the conclusion with an example.

2. Preliminaries

Definition 2.1[13] The Riemann-Liouville fractional integral of order α > 0 of a con-

tinuous function h : (0,+∞) → R is defined as

Iα0+h(t) =
1

Γ (α)

∫ t

0

(t− s)α−1h(s)ds,
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provided that the right-hand side is pointwise defined on (0,+∞), where Γ (α) is the gamma

function.

Definition 2.2[13] The Riemann-Liouville fractional derivative of order α > 0 for a

function f : (0,+∞) → R is defined by

Dα
0+f(t) =

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds, n− 1 ≤ α < n, n ∈ N.

Lemma 2.1[14] Let α > 0. Assume that u ∈ C(0, 1)
∩
L(0, 1) with a fractional derivative

of order α that belongs to C(0, 1)
∩
L(0, 1):

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where Ci ∈ R, i = 1, 2, · · · , n, n− 1 < α ≤ n.

Lemma 2.2 Let y ∈ L1[0, 1], then the solution of the problem
Dα

0+u(t) + y(t) = 0, t ∈ [0, 1],

u(i)(0) = 0, i = 0, 1, 2, ..., n− 2,

Dβ
0+u(1) =

∞∑
i=1

βi

∫ ηi

0
u(s)ds+

∞∑
i=1

γiu(ηi)

(2.1)

can be expressed by

u(t) =

∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =
1

p(0)Γ (α)

{
tα−1p(s)(1− s)α−β−1 − p(0)(t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1p(s)(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.
(2.2)

p(s) =
Γ (α)

Γ (α− β)
− 1

α

∑
s≤ηi

βi(
ηi − s

1− s
)α(1− s)β+1 −

∑
s≤ηi

γi(
ηi − s

1− s
)α−1(1− s)β. (2.3)

Proof By Lemma 2.1, we get

u(t) = −Iα0+y(t) + C1t
α−1 + C2t

α−2 + · · ·+ Cnt
α−n.

In view of the boundary conditions ui(0) = 0, i = 0, 1, 2, · · ·n− 2, the parameters C2 = C3 =

· · · = Cn = 0 are concluded and

u(t) = −Iα0+y(t) + C1t
α−1.

By the boundary value condition

Dβ
0+u(1) =

∞∑
i=1

βi

∫ ηi

0

u(s)ds+

∞∑
i=1

γiu(ηi),

we have

Dβ
0+u(1) =− 1

Γ (α− β)

∫ 1

0

(1− s)α−β−1y(s)ds+ C1
Γ (α)

Γ (α− β)

=
∞∑
i=1

βi

∫ ηi

0

u(s)ds+
∞∑
i=1

γiu(ηi)

=

∞∑
i=1

βi[−Iα+1y(ηi) +
C1η

α
i

α
] +

∞∑
i=1

γi[−Iαy(ηi) + C1η
α−1
i ],

that is to say,

C1{
Γ (α)

Γ (α− β)
− 1

α

∞∑
i=1

βiη
α
i −

∞∑
i=1

γiη
α−1
i }
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=
1

Γ (α− β)

∫ 1

0

(1− s)α−β−1y(s)ds−
∞∑
i=1

βi

Γ (α+ 1)

∫ ηi

0

(ηi − s)αy(s)ds

−
∞∑
i=1

γi
Γ (α)

∫ ηi

0

(ηi − s)α−1y(s)ds.

So,

C1 =
1

ξ
{
∫ 1

0

(1− s)α−β−1

Γ (α− β)
y(s)ds−

∞∑
i=1

βi

∫ ηi

0

(ηi − s)α

Γ (α+ 1)
y(s)ds−

∞∑
i=1

γi

∫ ηi

0

(ηi − s)α−1

Γ (α)
y(s)ds}.

Hence, the solution is

u(t) =−
∫ t

0

1

Γ (α)
(t− s)α−1y(s)ds+

∫ 1

0

(1− s)α−β−1p(s)

Γ (α)p(0)
y(s)ds · tα−1

=−
∫ t

0

p(0)(t− s)α−1

Γ (α)p(0)
y(s)ds+

∫ t

0

(1− s)α−β−1p(s)tα−1

Γ (α)p(0)
y(s)ds

+

∫ 1

t

(1− s)α−β−1p(s)tα−1

Γ (α)p(0)
y(s)ds

=

∫ t

0

p(s)(1− s)α−β−1tα−1 − p(0)(t− s)α−1

Γ (α)p(0)
y(s)ds+

∫ 1

t

p(s)(1− s)α−β−1tα−1

Γ (α)p(0)
y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

This completes the proof.

Lemma 2.3 Suppose that p(0) > 0, and then the function p(s) > 0, s ∈ [0, 1] and p(s)

is nondecreasing on [0, 1].

Proof Using hypothesis made by (1.1), we have

p(0) =
Γ (α)

Γ (α− β)
− 1

α

∞∑
i=1

βiη
α
i −

∞∑
i=1

γiη
α−1
i > 0,

p′(s) =
1

α

∑
s≤ηi

αβi(ηi − s)α−1(1− s)−α(1− s)β+1 − 1

α

∑
s≤ηi

βiα(ηi − s)α(1− s)−α−1(1− s)β+1

+
1

α

∑
s≤ηi

βi(β + 1)(ηi − s)α(1− s)−α(1− s)β

+
∑
s≤ηi

γi(1− α)(ηi − s)α−1(1− s)−α(1− s)β

+
∑
s≤ηi

γi(α− 1)(ηi − s)α−2(1− s)−α+1(1− s)β

+
∑
s≤ηi

βγi(ηi − s)α−1(1− s)−α+1(1− s)β−1

=
∑
s≤ηi

βi(ηi − s)α−1(1− s)−α+β[(1− s)− (ηi − s) +
β + 1

α
(ηi − s)]

+
∑
s≤ηi

γi(ηi − s)α−2(1− s)−α+β[(α− 1)(1− s)− (α− 1)(ηi − s) + β(ηi − s)] > 0.

So p(s) is nondecreasing on [0, 1]. This completes the proof.

Lemma 2.4 The function G(t, s) defined by (2.2) satisfies the following properties:

1) G(t, s) ≥ 0, ∂
∂t
G(t, s) ≥ 0, 0 ≤ t, s ≤ 1;
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2) max
t∈[0,1]

G(t, s) = G(1, s), 0 ≤ s ≤ 1;

3) G(t, s) ≥ tα−1G(1, s), 0 ≤ t, s ≤ 1;

4) max
1
4≤t≤ 3

4

G(t, s) ≥ (1
4
)α−1G(1, s), 0 ≤ s ≤ 1.

Proof 1) For 0 ≤ s ≤ t ≤ 1, by Lemma 2.3, we can see that

G(t, s) =
1

p(0)Γ (α)
[tα−1p(s)(1− s)α−β−1 − p(0)(t− s)α−1]

=
tα−1

p(0)Γ (α)
[p(s)(1− s)α−β−1 − p(0)(1− s

t
)α−1]

≥ p(s)tα−1

p(0)Γ (α)
[(1− s)α−β−1 − (1− s

t
)α−1]

>
p(s)tα−1

p(0)Γ (α)
[(1− s)α−1 − (1− s

t
)α−1] ≥ 0.

It is clear that for 0 ≤ t ≤ s ≤ 1, G(t, s) ≥ 0.

By simple computation, we have

∂

∂t
G(t, s) =

1

p(0)Γ (α)

{
(α− 1)p(s)(1− s)α−β−1tα−2 − (α− 1)p(0)(t− s)α−2, 0 ≤ s ≤ t ≤ 1,

(α− 1)p(s)(1− s)α−β−1tα−2, 0 ≤ t ≤ s ≤ 1.

Apparently, ∂
∂t
G(t, s) is continuous on [0, 1]× [0, 1]. By Lemma 2.3, we only need to consider

on 0 ≤ s ≤ t ≤ 1. Here,
∂

∂t
G(t, s) =

1

p(0)Γ (α)
[(α− 1)p(s)(1− s)α−β−1tα−2 − (α− 1)p(0)(t− s)α−2]

≥(α− 1)p(0)tα−2

p(0)Γ (α)
[(1− s)α−β−1 − (1− s

t
)α−2]

≥(α− 1)

Γ (α)
tα−2[(1− s)α−2 − (1− s

t
)α−2] ≥ 0.

2) By 1), we get that G(t, s) is nondecreasing. So,

max
t∈[0,1]

G(t, s) = G(1, s) =
1

p(0)Γ (α)
[p(s)(1− s)α−β−1 − p(0)(1− s)α−1], 0 ≤ s ≤ 1.

3) For 0 ≤ s ≤ t ≤ 1, we can see that

G(t, s) =
1

p(0)Γ (α)
[tα−1p(s)(1− s)α−β−1 − p(0)(t− s)α−1]

=
1

p(0)Γ (α)
tα−1[p(s)(1− s)α−β−1 − p(0)(1− s

t
)α−1]

≥ 1

p(0)Γ (α)
tα−1[p(s)(1− s)α−β−1 − p(0)(1− s)α−1]

=tα−1G(1, s).

For 0 ≤ t ≤ s ≤ 1, we can notice that

G(t, s) =
1

p(0)Γ (α)
tα−1p(s)(1− s)α−β−1≥tα−1G(1, s).

4) By 3), it is easy to see that max
1
4≤t≤ 3

4

G(t, s) ≥ ( 1
4
)α−1G(1, s), 0 ≤ s ≤ 1.

Let E = C[0, 1] be the Banach space equipped with the norm ∥ u ∥= sup
0≤t≤1

|u(t)| and

define a cone P by

P = {u ∈ E|u(t) ≥ tα−1 ∥ u ∥, t ∈ [0, 1]}.
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Define the operator T as follows:

(Tu)(t) =

∫ 1

0

G(t, s)h(s, u(s))ds, 0 ≤ t ≤ 1. (2.4)

Clearly, T : P → C[0, 1]. By Lemma 2.2, we get that the fixed point of T is the solution of

problem (1.1).

Lemma 2.5 T : P → P is completely continuous.

Proof First, ∀u ∈ P , it follows from the definition of T and the non-negativity of

G(t, s) and h that, (Tu)(t) ≥ 0(0 ≤ t ≤ 1). By Lemma 2.4 and (2.4), we have that

(Tu)(t) =

∫ 1

0

G(t, s)h(s, u(s))ds≤
∫ 1

0

G(1, s)h(s, u(s))ds, ∀t ∈ [0, 1],

(Tu)(t) =

∫ 1

0

G(t, s)h(s, u(s))ds≥tα−1

∫ 1

0

G(1, s)h(s, u(s))ds, ∀t ∈ [0, 1].

From the above two inequalities, we can get

(Tu)(t) ≥ tα−1 ∥ Tu ∥, ∀t ∈ [0, 1].

So, Tu ∈ P . That means T : P → P .

From the continuity of h, we know that T is continuous on P . Next, we are in a position to

show that T is a compact mapping. ∀D ⊂ P , D is bounded. That is to say, ∃M > 0, ∀u ∈ D,

we have ∥ u ∥≤ M . Denote L = max
0≤t≤1,0≤u≤M

| h(t, u) | +1. For any u ∈ D, we get that

| Tu(t) |≤
∫ 1

0

G(1, s)h(s, u(s))ds ≤ L

∫ 1

0

G(1, s)ds.

So, T (D) is bounded. For t1, t2 ∈ [0, 1], t1 < t2, we have

| Tu(t2)− Tu(t1) |

= |
∫ t1

0

(G(t2, s)−G(t1, s))h(s, u(s))ds+

∫ t2

t1

(G(t2, s)−G(t1, s))h(s, u(s))ds

+

∫ 1

t2

(G(t2, s)−G(t1, s))h(s, u(s))ds |

≤ L

p(0)Γ (α)

∫ t1

0

| p(s)(1− s)α−β−1tα−1
2 − p(0)(t2 − s)α−1 − p(s)(1− s)α−β−1tα−1

1

+ p(0)(t1 − s)α−1 | ds+ L

p(0)Γ (α)

∫ t2

t1

| p(s)(1− s)α−β−1 − p(0)(t2 − s)α−1

− p(s)(1− s)α−β−1tα−1
1 | ds+ L

p(0)Γ (α)

∫ 1

t2

| p(s)(1− s)α−β−1(tα−1
2 − tα−1

1 ) | ds

≤ L

p(0)Γ (α)

∫ t1

0

| p(s)(1− s)α−β−1(tα−1
2 − tα−1

1 ) | ds+ L

Γ (α)

∫ t1

0

| (t2 − s)α−1 − (t1 − s)α−1 | ds

+
L

p(0)Γ (α)

∫ t2

t1

| p(s)(1− s)α−β−1(tα−1
2 − tα−1

1 ) | ds+ L

p(0)Γ (α)

∫ t2

t1

| p(0)(t2 − s)α−1 | ds

+
L

p(0)Γ (α)

∫ 1

t2

| p(s)(1− s)α−β−1(tα−1
2 − tα−1

1 ) | ds

≤ L

p(0)Γ (α− β)

∫ t1

0

(1− s)α−β−1(tα−1
2 − tα−1

1 )ds+
L

Γ (α)

∫ t1

0

((t2 − s)α−1

− (t1 − s)α−1)ds+
L

p(0)Γ (α− β)

∫ t2

t1

(1− s)α−β−1(tα−1
2 − tα−1

1 )ds
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+
L

Γ (α)

∫ t2

t1

(t2 − s)α−1ds+
L

p(0)Γ (α− β)

∫ 1

t2

(1− s)α−β−1(tα−1
2 − tα−1

1 )ds

=
L

p(0)Γ (α− β + 1)
(t2

α−1 − t1
α−1) +

L

Γ (α+ 1)
(tα2 − tα1 − (t2 − t1)

α) +
L

Γ (α+ 1)
(t2 − t1)

α.

So, T (D) is equicontinuous. By the Arzela-Ascoli theorem, we can conclude that the operator

T : P → P is completely continuous.

Theorem 2.1 (Guo-Krasnoselskii’s Fixed Point Theorem)[15] Let E be a Banach space,

P ⊆ E a cone, and Ω1, Ω2 two bounded open balls of E centered at the origin with Ω1 ⊂ Ω2.

Suppose that:A : P
∩
(Ω2\Ω1) −→ P is a completely continuous operator such that either

1) ∥Ax∥ ≤ ∥x∥, x ∈ P
∩
∂Ω1, and ∥Ax∥ ≥ ∥x∥, x ∈ P

∩
∂Ω2 or

2) ∥Ax∥ ≥ ∥x∥, x ∈ P
∩
∂Ω1, and ∥Ax∥ ≤ ∥x∥, x ∈ P

∩
∂Ω2

holds. Then A has at least one fixed point in P
∩
(Ω2\Ω1).

3. Main Results

Definition 3.1 Let

h0 = lim
u→0+

max
0≤t≤1

h(t, u)

u
, h∞ = lim

u→+∞
min
0≤t≤1

h(t, u)

u
.

Theorem 3.1 If h0 = 0,h∞ = +∞, then the boundary value problem (1.1) has at least

a positive solution u∗.

Proof By the definition of h0, we have that ∃r1 > 0, for 0 < u ≤ r1, then

max
0≤t≤1

h(t, u)

u
≤ (

∫ 1

0

G(1, s)ds)−1.

That is to say, for 0 ≤ u ≤ r1, 0 ≤ t ≤ 1, we get that

h(t, u) ≤ (

∫ 1

0

G(1, s)ds)−1u.

Denote Ω1 = {u ∈ P :∥ u ∥< r1}. If u ∈ ∂Ω1, we know that ∥ u ∥= r1. So, for 0 ≤ s ≤ 1, we

have

0 ≤ u(s) ≤ r1, h(s, u(s)) ≤ (

∫ 1

0

G(1, s)ds)−1u(s).

By Lemma 2.4, we have that

∥ Tu ∥= max
0≤t≤1

| (Tu)(t) |= max
0≤t≤1

(Tu)(t) = max
0≤t≤1

∫ 1

0

G(t, s)h(s, u(s))ds

≤
∫ 1

0

G(1, s)h(s, u(s))ds ≤ (

∫ 1

0

G(1, s)ds)−1(

∫ 1

0

G(1, s)u(s)ds)

≤(

∫ 1

0

G(1, s)ds)−1(

∫ 1

0

G(1, s)ds) · r1 =∥ u ∥ .

By the definition of h∞, we get that ∃r2 > 0, for u ≥ r2, we have

min
0≤t≤1

h(t, u)

u
> 16α−1(

∫ 3
4

1
4

G(1, s)ds)−1.

That is to say, for u ≥ r2, 0 ≤ t ≤ 1, we get that

h(t, u) > 16α−1(

∫ 3
4

1
4

G(1, s)ds)−1u.

Let r2 > max{r1, 4α−1r2}, Ω2 = {u ∈ P :∥ u ∥< r2}. If u ∈ ∂Ω2, then ∥ u ∥= r2. For
1
4
≤ s ≤ 3

4
, we have

u(s) ≥ sα−1 ∥ u ∥≥ (
1

4
)α−1 ∥ u ∥= (

1

4
)α−1r2 ≥ r2,
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h(s, u(s)) > 16α−1(

∫ 3
4

1
4

G(1, s)ds)−1u(s).

By Lemma 2.4, we obtain

∥ Tu ∥= max
0≤t≤1

| (Tu)(t) |= max
0≤t≤1

∫ 1

0

G(t, s)h(s, u(s))ds

≥ max
0≤t≤1

∫ 3
4

1
4

G(t, s)h(s, u(s))ds

>(
1

4
)α−1

∫ 3
4

1
4

G(1, s)16α−1[

∫ 3
4

1
4

G(1, s)ds]−1ds

≥16α−1[

∫ 3
4

1
4

G(1, s)ds]−1(
1

4
)α−1

∫ 3
4

1
4

G(1, s)ds · (1
4
)α−1r2

=r2 =∥ u ∥ .

It follows from Theorem 2.1 that T has at least one fixed point u∗ in P
∩
(Ω2\Ω1). So the

boundary value problem (1.1) has at least one positive solution u∗. This completes the proof.

4. Example

In this section, we will present an example to illustrate our main results.

Example 4.1 Consider the following boundary value problem
D

7
2

0+u(t) +
u3(t)

5 4
√
u+1 3

√
1+t

= 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(0) = 0,

D1
0+u(1) =

∞∑
i=1

1
2i

∫ 1− 1
i+1

0
u(s)ds+

∞∑
i=1

1
3i
u(1− 1

i+1
).

(4.1)

Here, α = 7
2
, βi =

1
2i
, γi =

1
3i
, ηi = 1− 1

i+1
, h(t, u) = u3

5 4
√
u+1

1
3
√
1+t

, β = 1. Clearly, βi, γi > 0,

0 < η1 < η2 < · · · < ηi < · · · < 1, i = 1, 2, · · · . And

ξ =
Γ (α)

Γ (α− β)
− 1

α

∞∑
i=1

βiηi
α −

∞∑
i=1

γiηi
α−1

=
5

2
− 2

7

∞∑
i=1

1

2i
(1− 1

i+ 1
)

7
2 −

∞∑
i=1

1

3i
(1− 1

i+ 1
)

5
2

≥5

2
− 2

7
(
1

2
· 1 7

2 +
1

22
· 1 7

2 + · · ·+ 1

2n
· 1 7

2 + · · · )− (
1

3
· 1 5

2 +
1

32
· 1 5

2 + · · ·+ 1

3n
· 1 5

2 + · · · )

=
12

7
> 0.

Noticing
h(t, u)

u
=

u2

5 4
√
u+ 1

1
3
√
1 + t

,

we have

h0 = lim
u→0+

max
0≤t≤1

h(t, u)

u
= lim

u→0+

u2

5 4
√
u+ 1

· 1 = 0,

h∞ = lim
u→+∞

min
0≤t≤1

h(t, u)

u
= lim

u→+∞

u2

5 4
√
u+ 1

· 1
3
√
2
= +∞.

Therefore the assumptions of Theorem 3.1 are satisfied. Thus Theorem 3.1 ensures that the

problem (4.1) has at least one positive solution.
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带有积分与无穷点边值条件的分数阶微分方程的正解

沈凯月, 周宗福
(安徽大学数学科学学院, 安徽 合肥 230601)

摘要：研究一类带有积分边值条件和无穷点边值条件的分数阶微分方程的正解问题. 借

助Green函数有关的性质, 并利用锥上不动点定理, 获得该问题正解的存在性结果. 最后给出一

个例子说明所得结果的应用性.

关键词：积分边值条件; 分数阶微分方程; 不动点定理; 正解


